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Abstract
We consider the problem of differentiating a function specified by
noisy data. Regularizing the differentiation process avoids the noise
amplification of finite-difference methods. We use total-variation reg-
ularization, which allows for discontinuous solutions. The resulting
simple algorithm accurately differentiates noisy functions, including
those which have a discontinuous derivative.

1 Introduction

In many scientific applications, it is necessary to compute the derivative of
functions specified by data. Conventional finite-difference approximations
will greatly amplify any noise present in the data. Denoising the data before
or after differentiating does not generally give satisfactory results. (See an
example in Section 4.)

A method which does give good results is to regularize the differentiation
process itself. This guarantees that the computed derivative will have some
degree of regularity, to an extent that is often under control by adjusting
parameters. A common framework for this is Tikhonov regularization [12] of
the corresponding inverse problem. That is, the derivative of a function f,
say on [0, L], is the minimizer of the functional

F(u) = aR(u) + DF(Au — f), (1)
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where R(u) is a regularization or penalty term that penalizes irregularity
in u, Au(z) = [ u is the operator of antidifferentiation, DF(Au — f) is a
data fidelity term that penalizes discrepancy between Au and f, and « is a
regularization paramater that controls the balance between the two terms.
DF(-) is most commonly the square of the L? norm, DF(-) = fOL |- %, as is
appropriate if f has additive, Gaussian noise. (See [8] for an alternative in the
case of Poisson noise.) In [12], the regularization term is the squared L? norm;
this controls the size of u, without forcing minimizers to be regular. Tikhonov
regularization was first applied to numerical differentiation by Cullum [4],
where the regularization is the squared H' norm, R(u) = fOL |u/|?. This
forces minimizers to be continuous, as is required for the H' norm to be
finite. This prevents the accurate differentiation of functions with singular
points.

Other variational methods have the same drawback of forcing smoothness.
An approach that penalizes the L? norm of «” forces the minimizer to be
a cubic spline (see [11, 9, 6]). The variational approach of Knowles and
Wallace [7] does not fall into the category of Tikhonov regularization, but
explicitly assumes that u is smooth.

2 Total-variation regularization

We propose to use total-variation regularization in (1). We will thus compute
the derivative of f on [0, L] as the minimizer of the functional

F=a [+ [l g2 2

We assume f € L? (an empty assumption in the discrete case), and for
convenience that f(0) = 0. (In practice we simply subtract f(0) from f.)
The functional F'is defined on BV[0, L], the space of functions of bounded
variation. It is in fact continuous on BV, as BV is continuously embedded
in L2, and A is continuous on L? (being an integral operator with bounded
kernel). Existence of a minimizer for F* follows from the compactness of BV
in L2 [1, p. 152] and the lower semicontinuity of the BV seminorm [1, p. 120].
This and the strict convexity of F' are sufficient to guarantee that F' has a
unique minimizer .

Use of total variation accomplishes two things. It suppresses noise, as
a noisy function will have a large total variation. It also does not suppress



jump discontinuities, unlike typical regularizations. This allows for the com-
putation of discontinuous derivatives, and the detection of corners and edges
in noisy data.

Total-variation regularization is due to Rudin, Osher, and Fatemi in [10].
It has since found many applications in image processing. Replacing A in
the two-dimensional analog of (2) with the identity operator gives a method
for denoising an image f. See [3, 2] for an example where A is the Abel
transform, giving a method for regularizing Abel inversion.

3 Numerical implementation

A simple approach to minimizing (2) is gradient descent. This amounts to
evolving to stationarity the PDE obtained from the Euler-Lagrange equation:

/
ut:a%ﬁ—A*(Au—f), (3)
where A*v(z) = fo v is the L2-adjoint of A. Replacing the |u/| in the denom-
inator with y/(u')? 4 € for some small ¢ > 0 avoids division by zero. Typi-
cally, (3) is implemented with explicit time marching, with u; discretized as
(Upa1 — up) /At for some fixed At.

The problem with (3) is that convergence is slow. A faster algorithm is
the lagged diffusivity method of Vogel and Oman [14]. The idea is to replace
at each iteration of (3) the nonlinear differential operator u d%‘Z—:' with
the linear operator u — %ﬁ. The algorithm has been proven to converge
to the minimizer of F' [5].

Our discrete implementation of the algorithm is straightforward, and fol-
lows [13]. We assume that u is defined on a uniform grid
{x;}b = {0,Az,2Az,...,L}. Derivatives of u are computed halfway be-
tween grid points as centered differences. Integrals of u are likewise com-
puted halfway between grid points, using the trapezoid rule. The matrix of
the differentiation operator is denoted D; the matrix of the antidifferentiation
operator A is denoted K. Let F, be the diagonal matrix whose ¢th entry is
((tn () = tn (2 1))2+ €)% Let L, = AeD'E,D, H, = K'K +alL,. The
matrix H,, is an approximation to the Hessian of F' at u,. The update s, =
Upy1 — Uy is the solution to H,s, = —g,, where g, = K'(Ku,, — f) + aL,u,.

Less straightforward is the choice of the regularization parameter a. We
use the discrepancy principle: the mean-squared difference between Au, and



f should equal the variance of the noise in f. This has the effect of choosing
the most regular solution to the ill-posed inverse problem Au = f that is
consistent with the data f. In practice, the noise in f is not generally known,
so we estimate the noise variance by comparing f with a smoothed version

of f.
4 Example
Let fo(z) = |z — 1/2| on [0,1]. We define f at 100 evenly-spaced points in

[0, 1], and add Gaussian noise of standard deviation 0.05. Figure 1 shows the
resulting f.
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Figure 1: The function f, obtained from |x — 1/2| by adding Gaussian noise
of standard deviation 0.05.



First, we show in Figure 2 the result of computing f’ by simple centered
differencing. The noise has been greatly amplified, so much that denoising
the result is hopeless.
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Figure 2: Computing f” with finite differences greatly amplifies noise.

We compare with this the result in Figure 3 of denoising f before comput-
ing f’ by differencing. The denoising is done by total variation regularization,
as in (2) but with A replaced by the identity operator. The residual noise in
the denoised f is still amplified enough by the differentiation process to give
an unsatisfactory result.

Now we implement our total-variation regularized differentiation, (2).
The result is in Figure 4. The overall shape of f{ is captured almost perfectly.
The jump is correctly located. The one inaccuracy is the size of the jump:
there is a loss of contrast, which is typical of total-variation regularization in
the presence of noise. Decreasing the size of the jump reduces the penalty
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Figure 3: The function f is denoised, then differentiated with finite differ-
ences. The result is noisy and inaccurate.

term in (2), at the expense of increasing the data-fidelity term. We also
show the result of applying the antidifferentiation operator to the computed
f’, and compare with fy in Figure 5. The corner is sharp and the lines are
straight, though a little too flat.
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Figure 4: Regularizing the differentiation process with total-variation pro-
duces a noiseless derivative with a correctly located, sharp jump. The dis-
crepancy of the values from +1 are due to contrast loss, an artifact of total
variation methods in the presence of noise.
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Figure 5: The function fy (solid line) and the antidifferentiated numerical
derivative (circles). The numerically computed function is very similar to
the exact one.
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